Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
1.
China Pharmacy ; (12): 15-20, 2024.
Article in Chinese | WPRIM | ID: wpr-1005207

ABSTRACT

OBJECTIVE To investigate the mechanism of catalpol affecting the differentiation of helper T cell 17 (Th17) by interfering the expressions of pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). METHODS The naive CD4+ T cells were selected from the spleen of C57BL/6 mice, and were differentiated into Th17 cells by adding directional differentiation stimulants for 72 hours. At the same time, the cells were treated with 0 (directed control), 20, 40 and 80 μg/mL catalpol. The flow cytometry was used to detect the proportion of Th17 cell differentiation in cells; the colorimetric method was adopted to detect the levels of pyruvate and lactate in cell culture supernatant; mRNA expressions of retinoid-related orphan nuclear receptor gamma t (RORγt), PKM2 and LDHA were detected by qRT-PCR method; Western blot was used to detect the expression levels of PKM2, LDHA, signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3) proteins in cells. RESULTS Compared with the directed control group, after 72 hours of treatment with 20, 40, 80 μg/mL catalpol, the differentiation ratio of Th17 cells were decreased by 6.74%, 8.41%, 9.24%, and the levels of pyruvate and lactate in the cell culture supernatant, the mRNA expressions of PKM2, LDHA and RORγt as well as the protein expressions of PKM2 and LDHA and the phosphorylation of STAT3 were significantly reduced (P<0.05). CONCLUSIONS Catalpol can reduce the glycolysis level by down-regulating the expressions of PKM2 and LDHA, thereby inhibiting the differentiation of Th17 cells.

2.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 816-822, 2023.
Article in Chinese | WPRIM | ID: wpr-988728

ABSTRACT

ObjectiveTo analyze the expression of Lactate dehydrogenase A(LDHA) in both renal cell carcinoma (RCC) tissue and RCC cell lines, and to investigate the impact of LDHA expression on the progression of RCC. MethodsFrom June 2018 to June 2022, totally 52 cases of RCC tissue samples and 49 cases of para-cancerous tissue samples were collected through surgical procedures from our hospital. LDHA expression was detected using immunohistochemistry (IHC). The expression levels of LDHA in vitro were also detected in the normal human proximal tubule epithelial cell line HK-2 and renal cell carcinoma cell lines A498, Caki-2, ACHN, and 786-O by using qRT-PCR and Western blot. A recombinant plasmid carrying LDHA-shRNA was constructed and then transfected into 786-O cells to down-regulate the expression of LDHA. Tumor proliferative capacity was monitored using CCK-8 assay, clonal formation assay and EdU assessments. Additionally, cell glycolytic activity was assessed through glucose uptake assay, lactate secretion assay, and ECAR analysis. ResultsIHC analysis revealed significantly higher expression of LDHA in RCC tissue compared to adjacent tissues(P<0.05). Furthermore, RCC tissues with higher TNM stage exhibited greater expression of LDHA than those with lower TNM stage (P<0.05). The results of qRT-PCR and Western blot demonstrated that the expression of LDHA in each RCC cell line was significantly higher than that in HK-2(P<0.05). After blocking the expression of LDHA in 786-O, there was a significant down-regulation of cell proliferation and glycolysis capacity (P<0.05). ConclusionsThe expression of LDHA in RCC tissue and RCC cell lines is significantly overexpressed compared with normal one, particularly in those with higher TNM stage. Knockdown of the expression of LDHA significantly suppresses cell proliferation and aerobic glycolysis capacity in 786-O.

3.
Journal of Southern Medical University ; (12): 1063-1070, 2023.
Article in Chinese | WPRIM | ID: wpr-987023

ABSTRACT

OBJECTIVE@#To investigate the prognostic value of death-associated protein 5 (DAP5) in gastric cancer (GC) and its regulatory effect on aerobic glycolysis in GC cells.@*METHODS@#We analyzed DAP5 expression levels in GC and adjacent tissues and its association with survival outcomes of GC patients using public databases. We collected paired samples of GC and adjacent tissues from 102 patients undergoing radical resection of GC in our hospital from June, 2012 to July, 2017, and analyzed the correlation of DAP5 expression level detected immunohistochemically with the clinicopathological parameters of the patients. Cox regression analysis, Kaplan-Meier analysis, and ROC curves were used to explore the independent risk factors and the predictive value of DAP5 expression for 5-year survival of the patients. In the cell experiments, we observed the changes in aerobic glycolysis in MGC-803 cells following lentivirus-mediated DAP5 knockdown or overexpression by measuring glucose uptake and cellular lactate level and using qRT-PCR and Western blotting.@*RESULTS@#Analysis using the public databases showed that DAP5 was highly expressed in GC and correlated with tumor progression and poor survival outcomes of the patients (P < 0.05). In the clinical samples, DAP5 expression was significantly higher in GC than in the adjacent tissues (3.19±0.60 vs 1.00±0.12; t=36.863, P < 0.01), and a high expression of DAP5 was associated with a reduced 5-year survival rate of the patients (17.6% vs 72.5%; χ2=29.921, P < 0.05). A high DAP5 expression, T3-4, N2-3, and CEA≥5 ng/mL were identified as independent risk factors affecting 5-year survival outcomes of GC (P < 0.05), for which DAP5 expression showed a prediction sensitivity, specificity and accuracy of 73.2%, 80.4% and 79.0%, respectively. In MGC-803 cells, DAP5 knockdown significantly reduced glucose uptake, lactate level and the expressions of GLUT1, HK2 and LDHA, and DAP5 overexpression produced the opposite effects (P < 0.05).@*CONCLUSION@#A high expression of DAP5 in GC, which enhances cellular aerobic glycolysis to promote cancer progression, is correlated with a poor survival outcome and may serve as a biomarker for evaluating long-term prognosis of GC patients.


Subject(s)
Humans , Stomach Neoplasms , Blotting, Western , Databases, Factual , Glucose , Lactates
4.
Journal of Southern Medical University ; (12): 733-740, 2023.
Article in Chinese | WPRIM | ID: wpr-986983

ABSTRACT

OBJECTIVE@#To investigate the effects of expression levels of S100 calcium-binding protein A10 (S100A10) in lung adenocarcinoma (LUAD) on patient prognosis and the regulatory role of S100A10 in lung cancer cell proliferation and metastasis.@*METHODS@#Immunohistochemistry was used to detect the expression levels of S100A10 in LUAD and adjacent tissues, and the relationship between S100A10 expression and clinicopathological parameters and prognosis of the patients was statistically analyzed. The lung adenocarcinoma expression dataset in TCGA database was analyzed using gene enrichment analysis (GSEA) to predict the possible regulatory pathways of S100A10 in the development of lung adenocarcinoma. Lactate production and glucose consumption of lung cancer cells with S100A10 knockdown or overexpression were analyzed to assess the level of glycolysis. Western blotting, CCK-8 assay, EdU-594 assay, and Transwell assays were performed to determine the expression level of S100A10 protein, proliferation and invasion ability of lung cancer cells. A549 cells with S100A10 knockdown and H1299 cells with S100A10 overexpression were injected subcutaneously in nude mice, and tumor growth was observed.@*RESULTS@#The expression level of S100A10 was significantly upregulated in LUAD tissues as compared with the adjacent tissues, and an elevated S100A10 expression level was associated with lymph node metastasis, advanced tumor stage and distant organ metastasis (P < 0.05), but not with tumor differentiation or the patients' age or gender (P > 0.05). Survival analysis showed that elevated S100A10 expressions in the tumor tissue was associated with a poor outcome of the patients (P < 0.001). In the lung cancer cells, S100A10 overexpression significantly promoted cell proliferation and invasion in vitro (P < 0.001). GSEA showed that the gene sets of glucose metabolism, glycolysis and mTOR signaling pathway were significantly enriched in high expressions of S100A10. In the tumor-bearing nude mice, S100A10 overexpression significantly promoted tumor growth, while S100A10 knockdown obviously suppressed tumor cell proliferation (P < 0.001).@*CONCLUSION@#S100A10 overexpression promotes glycolysis by activating the Akt-mTOR signaling pathway to promote proliferation and invasion of lung adenocarcinoma cells.


Subject(s)
Animals , Mice , Humans , Adenocarcinoma of Lung/pathology , Cell Proliferation , Lung Neoplasms/pathology , Mice, Nude , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , S100 Proteins/genetics
5.
Cancer Research on Prevention and Treatment ; (12): 634-640, 2023.
Article in Chinese | WPRIM | ID: wpr-986243

ABSTRACT

The relationship between tumor metabolism and immunity is complex and diverse. To date, the role of tumor-specific metabolic reprogramming in shaping the specific tumor microenvironment in tumor immunotherapy remains unclear. Lactic acid is the main product of glycolysis, and the aerobic glycolysis of tumor cells causes lactic acid to accumulate in the microenvironment. Recent studies have shown that the accumulation of lactic acid in the tumor microenvironment hinders anti-tumor immunity, especially affects the function, differentiation, and metabolism of immune cells, and participates in tumor immune escape, thus promoting tumor. This article reviews the effects of lactate accumulation in the tumor microenvironment on dendritic cells, T cells, NK cells, tumor-associated macrophages, and myeloid-derived suppressor cells. Targeted intervention of lactate production and efflux by tumor cells is expected to become a new strategy for tumor immunotherapy.

6.
Cancer Research on Prevention and Treatment ; (12): 622-627, 2023.
Article in Chinese | WPRIM | ID: wpr-986241

ABSTRACT

Metastasis is the main cause of cancer-related death. Growing evidence has shown that changes in glucose metabolism in nasopharyngeal carcinoma cells affect the invasion and metastasis of nasopharyngeal carcinoma through many pathways. This review summarizes the molecular mechanism underlying abnormal glucose metabolism in nasopharyngeal carcinoma cells and analyzes its relationship with the invasion and metastasis of nasopharyngeal carcinoma, including aerobic glycolysis, aerobic oxidation, and pentose phosphate pathway. The aim is to provide novel approaches using the relationships among glucose metabolism, invasion, and metastasis in the targeted therapy of nasopharyngeal carcinoma.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 10-18, 2023.
Article in Chinese | WPRIM | ID: wpr-964940

ABSTRACT

ObjectiveTo explore the mechanism of Dihuang Yinzi in improving astrocyte injury and glycolysis in Alzheimer's disease (AD) mice via regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, thereby improving the cognitive function of AD mice. MethodForty male APP/PS1 transgenic mice aged four months were randomly divided into a model group and a model + Dihuang Yinzi (0.25 g·kg-1) group, with 20 mice in each group. Forty C57BL/6J mice with the same background and same age were randomly divided into a control group and a control + Dihuang Yinzi (0.25 g·kg-1) group, with 20 mice in each group. The mice in the control + Dihuang Yinzi group and the model + Dihuang Yinzi group were administered with Dihuang Yinzi by gavage, and those in the control group and the model group received an equal volume of sterilized normal saline, once a day for 150 days. Morris water maze test was performed to test the ability of navigation and space exploration of mice. The protein expression of p-PI3K, PI3K, p-Akt, Akt, phosphofructokinase-1 (PFK-1), and aldehyde dehydrogenase 3 family member B2 (ALDH3B2) in mouse brain tissues was measured by Western blot. An immunofluorescence assay was performed to detect astrocyte morphology and the expression level of ALDH3B2. ResultAs compared with the control group, the model group showed prolonged escape latency during the 2nd to 5th days of the location-based navigation (P<0.05, P<0.01), reduced number of times crossing the target area of the platform, shortened residence time in the target quadrant (P<0.05, P<0.01), prolonged residence time in the opposite quadrant (P<0.05), increased surface area of the cell body and total length of cell protrusions of astrocytes (P<0.05, P<0.01), and down-regulated protein expression of p-PI3K, p-Akt, ALDH3B2, and PFK-1 (P<0.01), while the above experimental indexes were not significantly different in the control + Dihuang Yinzi group. Compared with the model group, the model + Dihuang Yinzi group showed shortened escape latency of APP/PS1 mice during the 2nd to 5th days of the location-based navigation (P<0.05, P<0.01), increased number of times crossing the platform, prolonged target quadrant residence time (P<0.05, P<0.01), shortened residence time in the opposite quadrant (P<0.05), reduced surface area of the cell body and total length of cell protrusions of astrocytes (P<0.05), and up-regulated protein expression of p-PI3K, p-Akt, ALDH3B2, and PFK-1 (P<0.01). ConclusionDihuang Yinzi can improve the learning and memory ability of AD mice by activating the PI3K/Akt signaling pathway and up-regulating the protein expression of PFK-1 and ALDH3B2 to protect against astrocyte injury in brain tissues and improve glycolysis.

8.
China Journal of Chinese Materia Medica ; (24): 2352-2359, 2023.
Article in Chinese | WPRIM | ID: wpr-981311

ABSTRACT

This study aims to explore the mechanism of Yanghe Decoction(YHD) against subcutaneous tumor in pulmonary metastasis from breast cancer, which is expected to lay a basis for the treatment of breast carcinoma with YHD. The chemical components of medicinals in YHD, and the targets of the components were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction. The disease-related targets were searched from GeneCards and Online Mendelian Inheritance in Man(OMIM). Excel was employed to screen the common targets and plot the Venn diagram. The protein-protein interaction network was constructed. R language was used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. A total of 53 female SPF Bablc/6 mice were randomized into normal group(same volume of normal saline, ig), model group(same volume of normal saline, ig), and low-dose and high-dose YHD groups(YHD, ig, 30 days), with 8 mice in normal group and 15 mice in each of the other groups. Body weight and tumor size was measured every day. Curves for body weight variation and growth of tumor in situ were plotted. In the end, the subcutaneous tumor sample was collected and observed based on hematoxylin and eosin(HE) staining. The mRNA and protein levels of hypoxia inducible factor-1α(HIF-1α), pyruvate kinase M2(PKM2), lactate dehydrogenase A(LDHA), and glucose transporter type 1(GLUT1) were detected by PCR and Western blot. A total of 213 active components of YHD and 185 targets against the disease were screened out. The hypothesis that YHD may regulate glycolysis through HIF-1α signaling pathway to intervene in breast cancer was proposed. Animal experiment confirmed that the mRNA and protein levels of HIF-1α, PKM2, LDHA, and GLUT1 in the high-and low-dose YHD groups were lower than those in the model group. YHD has certain inhibitory effect on subcutaneous tumor in pulmonary metastasis from breast cancer in the early stage, which may intervene pulmonary metastasis from breast cancer by regulating glycolysis through HIF-1α signaling pathway.


Subject(s)
Female , Mice , Animals , Glucose Transporter Type 1/genetics , Network Pharmacology , Animal Experimentation , Saline Solution , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Signal Transduction , Glycolysis , RNA, Messenger , Neoplasms/drug therapy , Molecular Docking Simulation
9.
Acta Pharmaceutica Sinica B ; (6): 2680-2700, 2023.
Article in English | WPRIM | ID: wpr-982855

ABSTRACT

Since the utilization of anthracyclines in cancer therapy, severe cardiotoxicity has become a major obstacle. The major challenge in treating cancer patients with anthracyclines is minimizing cardiotoxicity without compromising antitumor efficacy. Herein, histone deacetylase SIRT6 expression was reduced in plasma of patients treated with anthracyclines-based chemotherapy regimens. Furthermore, overexpression of SIRT6 alleviated doxorubicin-induced cytotoxicity in cardiomyocytes, and potentiated cytotoxicity of doxorubicin in multiple cancer cell lines. Moreover, SIRT6 overexpression ameliorated doxorubicin-induced cardiotoxicity and potentiated antitumor efficacy of doxorubicin in mice, suggesting that SIRT6 overexpression could be an adjunctive therapeutic strategy during doxorubicin treatment. Mechanistically, doxorubicin-impaired mitochondria led to decreased mitochondrial respiration and ATP production. And SIRT6 enhanced mitochondrial biogenesis and mitophagy by deacetylating and inhibiting Sgk1. Thus, SIRT6 overexpression coordinated metabolic remodeling from glycolysis to mitochondrial respiration during doxorubicin treatment, which was more conducive to cardiomyocyte metabolism, thus protecting cardiomyocytes but not cancer cells against doxorubicin-induced energy deficiency. In addition, ellagic acid, a natural compound that activates SIRT6, alleviated doxorubicin-induced cardiotoxicity and enhanced doxorubicin-mediated tumor regression in tumor-bearing mice. These findings provide a preclinical rationale for preventing cardiotoxicity by activating SIRT6 in cancer patients undergoing chemotherapy, but also advancing the understanding of the crucial role of SIRT6 in mitochondrial homeostasis.

10.
China Journal of Chinese Materia Medica ; (24): 3215-3223, 2023.
Article in Chinese | WPRIM | ID: wpr-981458

ABSTRACT

This study aimed to investigate the relationship between coagulating cold and blood stasis syndrome and glycolysis, and observe the intervention effect of Liangfang Wenjing Decoction(LFWJD) on the expression of key glycolytic enzymes in the uterus and ovaries of rats with coagulating cold and blood stasis. The rat model of coagulating cold and blood stasis syndrome was established by ice-water bath. After modeling, the quantitative scoring of symptoms were performed, and according to the scoring results, the rats were randomly divided into a model group and LFWJD low-, medium-and high-dose groups(4.7, 9.4, 18.8 g·kg~(-1)·d~(-1)), with 10 in each group. Another 10 rats were selected as the blank group. After 4 weeks of continuous administration by gavage, the quantitative scoring of symptoms was repeated. Laser speckle flowgraphy was used to detect the changes of microcirculation in the ears and uterus of rats in each group. Hematoxylin-eosin(HE) staining was used to observe the pathological morphology of uterus and ovaries of rats in each group. The mRNA and protein expressions of pyruvate dehydrogenase kinase 1(PDK1), hexokinase 2(HK2) and lactate dehydrogenase A(LDHA) in the uterus and ovaries of rats were examined by real-time quantitative polymerase chain reaction(RT-qPCR) and Western blot, respectively. The rats in the model group showed signs of coagulating cold and blood stasis syndrome, such as curl-up, less movement, thickened veins under the tongue, and reduced blood perfusion in the microcirculation of the ears and uterus, and HE staining revealed a thinning of the endometrium with disorganized arrangement of epithelial cells and a decrease in the number of ovarian follicles. Compared with the model group, the treatment groups had alleviated coagulating cold and blood stasis, which was manifested as red tongue, reduced nail swelling, no blood stasis at the tail end as well as increased blood perfusion of the microcirculation in the ears and uterus(P<0.05 or P<0.01). Among the groups, the LFWJD medium-and high-dose groups had the most significant improvement in coagulating cold and blood stasis, with neatly arranged columnar epithelial cells in uterus, and the number of ovarian follicles was higher than that in the model group, especially mature follicles. The mRNA and protein expressions of PDK1, HK2, LDHA in uterus and ovaries were up-regulated in the model group(P<0.05 or P<0.01), while down-regulated in LFWJD medium-and high-dose groups(P<0.05 or P<0.01). The LFWJD low-dose group presented a decrease in the mRNA expressions of PDK1, HK2 and LDHA in uterus and ovaries as well as in the protein expressions of HK2 and LDHA in uterus and HK2 and PDK1 in ovaries(P<0.05 or P<0.01). The therapeutic mechanism of LFWJD against coagulating cold and blood stasis syndrome is related to the down-regulation of key glycolytic enzymes PDK1, HK2 and LDHA, and the inhibition of glycolytic activities in uterus and ovaries.


Subject(s)
Female , Animals , Rats , Ovary , Uterus , Ovarian Follicle , Lactate Dehydrogenase 5 , Glycolysis
11.
Journal of Experimental Hematology ; (6): 38-44, 2023.
Article in Chinese | WPRIM | ID: wpr-971099

ABSTRACT

OBJECTIVE@#To investigate the influence and mechanism of atorvastatin on glycolysis of adriamycin resistant acute promyelocytic leukemia (APL) cell line HL-60/ADM.@*METHODS@#HL-60/ADM cells in logarithmic growth phase were treated with different concentrations of atorvastatin, then the cell proliferation activity was measured by CCK-8 assay, the apoptosis was detected by flow cytometry, the glycolytic activity was checked by glucose consumption test, and the protein expressions of PTEN, p-mTOR, PKM2, HK2, P-gp and MRP1 were detected by Western blot. After transfection of PTEN-siRNA into HL-60/ADM cells, the effects of low expression of PTEN on atorvastatin regulating the behaviors of apoptosis and glycolytic metabolism in HL-60/ADM cells were further detected.@*RESULTS@#CCK-8 results showed that atorvastatin could inhibit the proliferation of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.872, r=0.936), and the proliferation activity was inhibited most significantly when treated with 10 μmol/L atorvastatin for 24 h, which was decreased to (32.3±2.18)%. Flow cytometry results showed that atorvastatin induced the apoptosis of HL-60/ADM cells in a concentration-dependent manner (r=0.796), and the apoptosis was induced most notably when treated with 10 μmol/L atorvastatin for 24 h, which reached to (48.78±2.95)%. The results of glucose consumption test showed that atorvastatin significantly inhibited the glycolytic activity of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.915, r=0.748), and this inhibition was most strikingly when treated with 10 μmol/L atorvastatin for 24 h, reducing the relative glucose consumption to (46.53±1.71)%. Western blot indicated that the expressions of p-mTOR, PKM2, HK2, P-gp and MRP1 protein were decreased in a concentration-dependent manner (r=0.737, r=0.695, r=0.829, r=0.781, r=0.632), while the expression of PTEN protein was increased in a concentration-dependent manner (r=0.531), when treated with different concentrations of atorvastatin for 24 h. After PTEN-siRNA transfected into HL-60/ADM cells, it showed that low expression of PTEN had weakened the promoting effect of atorvastatin on apoptosis and inhibitory effect on glycolysis and multidrug resistance.@*CONCLUSION@#Atorvastatin can inhibit the proliferation, glycolysis, and induce apoptosis of HL-60/ADM cells. It may be related to the mechanism of increasing the expression of PTEN, inhibiting mTOR activation, and decreasing the expressions of PKM2 and HK2, thus reverse drug resistance.


Subject(s)
Humans , Atorvastatin/pharmacology , PTEN Phosphohydrolase/pharmacology , Sincalide/metabolism , Drug Resistance, Neoplasm/genetics , TOR Serine-Threonine Kinases/metabolism , Leukemia, Promyelocytic, Acute/drug therapy , Doxorubicin/pharmacology , Apoptosis , RNA, Small Interfering/pharmacology , Glycolysis , Glucose/therapeutic use , Cell Proliferation
12.
Chinese Journal of Oncology ; (12): 499-507, 2023.
Article in Chinese | WPRIM | ID: wpr-984749

ABSTRACT

Objective: To clarify the mechanisms involvement in Alisertib-resistant colorectal cells and explore a potential target to overcome Alisertib-resistance. Methods: Drug-resistant colon cancer cell line (named as HCT-8-7T cells) was established and transplanted into immunodeficient mice. The metastasis in vivo were observed. Proliferation and migration of HCT-8-7T cells and their parental cells were assessed by colony formation and Transwell assay, respectively. Glycolytic capacity and glutamine metabolism of cells were analyzed by metabolism assays. The protein and mRNA levels of critical factors which are involved in mediating glycolysis and epithelial-mesenchymal transition (EMT) were examined by western blot and reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR), respectively. Results: In comparison with the mice transplanted with HCT-8 cells, which were survival with limited metastatic tumor cells in organs, aggressive metastases were observed in liver, lung, kidney and ovary of HCT-8-7T transplanted mice (P<0.05). The levels of ATP [(0.10±0.01) mmol/L], glycolysis [(81.77±8.21) mpH/min] and the capacity of glycolysis [(55.50±3.48) mpH/min] in HCT-8-7T cells were higher than those of HCT-8 cells [(0.04±0.01) mmol/L, (27.77±2.55) mpH/min and(14.00±1.19) mpH/min, respectively, P<0.05]. Meanwhile, the levels of p53 protein and mRNA in HCT-8-7T cells were potently decreased as compared to that in HCT-8 cells (P<0.05). However, the level of miRNA-125b (2.21±0.12) in HCT-8-7T cells was significantly elevated as compared to that in HCT-8 cells (1.00±0.00, P<0.001). In HCT-8-7T cells, forced-expression of p53 reduced the colon number (162.00±24.00) and the migration [(18.53±5.67)%] as compared with those in cells transfected with control vector [274.70±40.50 and (100.00±29.06)%, P<0.05, respectively]. Similarly, miR-125b mimic decreased the glycolysis [(25.28±9.51) mpH/min] in HCT-8-7T cells as compared with that [(54.38±12.70)mpH/min, P=0.003] in HCT-8-7T cells transfected with control. Meanwhile, in comparison with control transfected HCT-8-7T cells, miR-125b mimic also significantly led to an increase in the levels of p53 and β-catenin, in parallel with a decrease in the levels of PFK1 and HK1 in HCT-8-7T cells (P<0.05). Conclusions: Silencing of p53 by miR-125b could be one of the mechanisms that contributes to Alisertib resistance. Targeting miR-125b could be a strategy to overcome Alisertib resistance.


Subject(s)
Animals , Female , Mice , Humans , Azepines , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , RNA, Messenger , Tumor Suppressor Protein p53/genetics , Drug Resistance, Neoplasm
13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 26-33, 2023.
Article in Chinese | WPRIM | ID: wpr-984580

ABSTRACT

ObjectiveTo explore the effect and mechanism of Sishenwan-containing serum on aerobic glycolysis in human colon cancer HCT116 cells. MethodCell counting kit-8 (CCK-8) was used to detect the cell viability of colon cancer HCT116 cells after treatment with Sishenwan-containing serum (2.5%, 5%, and 10%) for 24, 48, 72 h. The concentration of lactic acid, the content of intracellular glucose, and the activity of hexokinase (HK) and fructose-6-phosphate kinase (PFK) in the cell culture medium were detected by the micro-method. The content of glucose transporter 1 (GluT1) mRNA was detected by Real-time quantitative polymerase chain reaction (Real-time PCR). The protein expression of GluT1 and methyltransferase-like 3 (MettL3) was detected by Western blot. The expression of GluT1 in cells was detected by immunofluorescence and the level of N6-methyladenosine (m6A) RNA methylation was detected by colorimetry. ResultCompared with the normal serum, 2.5%, 5%, and 10% Sishenwan-containing serum had no significant effect on the viability of HCT116 cells at 24 h, while 10% Sishenwan-containing serum showed a significant inhibitory effect on the viability of HCT116 cells at 48 h (P<0.05). Hence, 10% Sishenwan-containing serum was used in subsequent experiments, and the intervention time was 48 h. Compared with the normal serum, 10% Sishenwan-containing serum could reduce lactate production (P<0.05), down-regulate glucose uptake (P<0.05), and blunt the activities of HK and PFK, the key rate-limiting enzymes of glycolysis (P<0.05). Meanwhile, 10% Sishenwan-containing serum could decrease the expression of GluT1 protein (P<0.01) and mRNA (P<0.05) and reduce the proportion of cells expressing GluT1 (P<0.01). Compared with the normal serum, Sishenwan-containing serum also decreased the protein content of MettL3 (P<0.05) and the methylation level of m6A RNA (P<0.01). ConclusionSishenwan can inhibit glycolysis in colon cancer cells, and its inhibitory mechanism may be related to reducing MettL3 overexpression, inhibiting m6A RNA methylation, and down-regulating GluT1 and the activities of intracellular aerobic glycolysis-related enzymes such as HK and PFK.

15.
Clinics ; 78: 100307, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1528417

ABSTRACT

Abstract Objectives Melanoma is one of the leading causes of cancer death. Kinesin Family member 22 (KIF22) is essential for the invasion of melanoma cells, but the role and mechanism of KIF22 in the proliferation and glycolysis in melanoma remains unknown. Methods KIF22 expression in melanoma tissues and the relationship between KIF22 high expression and overall survival rate in patients with melanoma were analyzed using the Tnmplot database. KIF22 expression in melanoma cells was examined by western blot. Then, KIF22 was silenced and CCK-8 assay, EDU staining and flow cytometry analysis were adopted for assessing cell proliferation and apoptosis. In addition, the glycolysis metabolism of melanoma cells was reflected by detecting Extracellular Acidification Rates (ECAR) and Oxygen Consumption Rates (OCR). The expression of proteins related to apoptosis, glycolysis and EGFR/STAT3 signaling was tested by western blot. Subsequently, melanoma cells were treated with EGF or Colivelin to further elucidate the regulatory effect of KIF22 on EGFR/STAT3 signaling. Results KIF22 expression was notably upregulated in melanoma tissues and cells, and KIF22 high expression was associated with a poor prognosis. Moreover, KIF22 insufficiency suppressed proliferation and accelerated apoptosis of melanoma cells. Additionally, glycolysis was reduced by KIF22 depletion, evidenced by the decreased ECAR and increased OCR, accompanied by the downregulated expression of HK2, PKM2 and LDHA. Importantly, the impacts of KIF22 depletion on the progression of melanoma were partially attenuated after EGF or Colivelin treatment. Conclusion Collectively, KIF22 knockdown suppressed the proliferation and glycolysis and facilitated the apoptosis of melanoma cells by inactivating EGFR/STAT3 signaling.

16.
J. appl. oral sci ; 31: e20220461, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1440413

ABSTRACT

Abstract Oral potentially malignant disorders (OPMD) are associated with an increased risk of oral squamous cell carcinoma (OSCC). OSCC has an aggressive profile and is the most prevalent among different head and neck malignancies. Most OSCC patients are diagnosed with advanced stage tumors and have a poor prognosis. Cancer cells are able to reprogram their metabolism, even in the presence of oxygen, enhancing the conversion of glucose to lactate via the glycolytic pathway, a phenomenon mainly regulated by hypoxia-inducible factor (HIF) signaling. Thus, several glycometabolism-related biomarkers are upregulated. Objectives This study aimed to evaluate the immunoexpression of the HIF targets GLUT1, GLUT3, HK2, PFKL, PKM2, pPDH, LDHA, MCT4, and CAIX in OPMD and OSCC samples, in order to identify potential correlations between biomarkers' immunoexpression, clinicopathological features, and prognostic parameters. Methodology OSCC and OPMD samples from 21 and 34 patients (respectively) were retrospectively collected and stained for the different biomarkers by immunohistochemistry. Results CAIX and MCT4 expressions were significantly higher in OSCC samples when compared with OPMD samples, while the rest were also expressed by OPMD. GLUT3 and PKM2 alone, and the concomitant expression of more than four glycometabolism-related biomarkers were significantly correlated with the presence of dysplasia in OPMD. When considering OSCC cases, a trend toward increased expression of biomarkers and poor clinicopathological features was observed, and the differences regarding HK2, PFKL, LDHA and MCT4 expression were significant. Moreover, HK2 and CAIX were correlated with low survival rates. GLUT1 and GLUT3 were significantly associated with poor outcome when their expression was observed in the hypoxic region of malignant lesions. Conclusion OPMD and OSCC cells overexpress glycolysis-related proteins, which is associated with aggressive features and poor patient outcome. Further research is needed to deeply understand the glycolic phenotype in the process of oral carcinogenesis.

17.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 587-595, 2023.
Article in Chinese | WPRIM | ID: wpr-979211

ABSTRACT

Long noncoding RNAs (LncRNAs), a class of noncoding RNAs greater than 200 bases in length, are widely involved in the initiation, progression and glycolytic processes of many tumors, and can act as competitive endogenous RNA sponges to absorb miRNAs. LncRNAs can also inhibit miRNA expression, thereby regulate the glycolysis of tumor cells, affects cell proliferation, invasion and other biological activities. This review explores the roles of LncRNAs and glycolysis in digestive system tumors (DST), a representative group of malignant tumors. Extending the LncRNA role in the diagnosis, treatment and prognosis of other tumors, we conclude that LncRNAs have the potential to be new candidate genes for tumorigenesis and serve as tumor biomarkers, which provides new insight into morbidity and mortality decrease of DST and other tumors.

18.
Acta Pharmaceutica Sinica ; (12): 1204-1210, 2023.
Article in Chinese | WPRIM | ID: wpr-978702

ABSTRACT

In metabolic diseases, the accumulation of reactive oxygen species and oxidative stress are closely associated with ferroptosis. As a key regulatory factor, the imbalance between glycolysis and fatty acid metabolism can participate in ferroptosis directly or indirectly, thereby regulating the occurrence and development of various metabolic diseases. The essence of ferroptosis is a new regulatory cell death mode, which is caused by the excessive accumulation of iron-dependent lipid peroxide. It is closely related to glycolysis and fatty acid metabolism, which plays an important role in metabolic diseases. This regulatory cell death mode is significantly distinguished from other programmed cell death modes and has unique changes in cell morphology, symbolic characteristics and mechanisms. This paper first illustrates the main mechanism of glycolysis and fatty acid metabolism imbalance in the occurrence of ferroptosis, then reviews the research progress of ferroptosis in tumor, diabetes, rheumatoid arthritis and other metabolic diseases, and finally reveals the internal connection between glycolysis-fatty acid metabolism imbalance and ferroptosis, as well as its impacts on metabolic diseases, which provide new strategies for the prevention and treatment of metabolic diseases.

19.
Acta Pharmaceutica Sinica ; (12): 1904-1912, 2023.
Article in Chinese | WPRIM | ID: wpr-978664

ABSTRACT

Based on the technology of platelet proteomics, the key regulatory proteins and pathogenesis of coronary heart disease with phlegm and blood stasis syndrome were explored and analyzed. Based on the previous laboratory research, the model of coronary heart disease in mini-swine with phlegm-stasis cementation syndrome was duplicated. The model was judged by the changes in blood lipid and myocardial tissue characteristics. Furthermore, the platelet proteins were studied by quantitative proteomics, and the differentially expressed proteins were screened. The critical regulatory proteins and biological pathways of coronary heart disease with phlegm-stasis cementation syndrome were analyzed by bioinformatics. After ten weeks of modeling, the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low density lipoprotein (VLDL-C), triglyceride (TG), creatine kinase (CK) and creatine kinase-MB (CK-MB) in the model group were significantly increased, reflecting the pathological changes such as increased blood lipid, abnormal coagulation function and myocardial ischemia in the model group. In addition, compared with the sham group, there were 26 up-regulated proteins and 8 down-regulated proteins in the platelets of the model group. Combined with bioinformatics analysis, it was found that differential proteins mainly involved in glycolysis/gluconeogenesis, pyruvate metabolism, lipid and atherosclerosis, Ras protein signal transduction. Among them, lactate dehydrogenase B (LDHB), alcohol dehydrogenase 5 (ADH5), neuroblastoma ratsarcoma viral oncogene homolog (NRAS) and Kirsten ratsarcoma viral oncogene homolog (KRAS) play a central role when interacting with other proteins and simultaneously participate in multiple action pathways. The results showed that LDHB, ADH5, NRAS, and KRAS may be the marker proteins in CHD with phlegm-stasis cementation syndrome by regulating glycolysis/gluconeogenesis, pyruvate metabolism, lipid and atherosclerosis, Ras protein signal transduction and other biological processes.

20.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 679-684, 2023.
Article in Chinese | WPRIM | ID: wpr-974755

ABSTRACT

@#Oral lichen planus (OLP) is a chronic inflammatory disease of the oral mucosa. The pathogenesis of OLP is still unclear. Immune abnormalities mediated by T cells and related cytokines play a crucial role in the pathogenesis of OLP. In recent years, glycolytic metabolism-related transporters, enzymes and regulators, such as glucose transporter-1 (Glut1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), lactate dehydrogenase A (LDHA), mammalian target of rapamycin (mTOR) and hypoxia inducible factor-1α (HIF-1a), have attracted an increasing amount of attention in OLP by regulating the proliferation and differentiation of T cells and the secretion of inflammatory factors. It has been shown that 2-deoxy-D-glucose (2-DG) or rapamycin (RAPA) inhibits the glycolytic metabolism of T cells and then inhibits OLP. This article reviews the research progress of glycolytic metabolism-related transporters, enzymes and regulatory factors in OLP in recent years.

SELECTION OF CITATIONS
SEARCH DETAIL